On the Robustness of Multidimensional Poverty Orderings in the EU

Tomáš Želinský1 Francisco Azpitarte ${ }^{2}$

${ }^{1}$ Technical University of Košice \& Charles University in Prague
${ }^{2}$ The University of Melbourne \& The Brotherhood of St Laurence
Mannheim, 2-3 March 2017

Questions

The measurement of poverty is complex: many methodological and normative choices

Especially true with multidimensional measures
(1) Under which conditions can we claim robustly that poverty in region A is higher than in region B ?
(2) When can we say that poverty in a given region has unambigously declined or increased?

- In the multidimensional poverty measurement: weights affect the identification and the depth of poverty
- How should we weigh the dimensions? No consensus
- Standard approach: equal weights and then robustness checks for a grid of vectors, e.g. official measure in the EU
- Not a good idea: poverty comparisons are in general extremely sensitive to weights
- Importance of dominance conditions

Measurement Framework

- Alkire and Foster (2011): very influential paper
- Counting approach to multidimensional poverty: valid for cardinal and ordinal dimensions
- Assume N units and D indicators of wellbeing. If $x_{n d}<z_{d}$ then n is deprived in d
- For each dimension $\exists w_{d} \in(0,1)$ such that $\sum_{d=1}^{D} w_{d}=1$
- The deprivation score for each individual is:

$$
c_{n} \equiv \sum_{d=1}^{D} w_{d} \mathbb{I}\left(x_{n d}<z_{d}\right)
$$

Measurement Framework

- Identification rule $\rho(W, k)$: a person is deemed poor: $c_{n} \geq k$, where $k \in[0,1]$
- Individual poverty function $\left\{\begin{array}{l}p_{n}=\mathbb{I}\left(c_{n} \geq k\right) g\left(c_{n}\right) \text { if } n \text { is poor } \\ 0 \quad \text { otherwise }\end{array}\right.$
- where $g\left(c_{n}\right)$ satisifies $g(0)=0, g^{\prime}>0$
- The following class of poverty indices

$$
P(W, k)=\frac{1}{N} \sum_{n=1}^{N} p_{n}
$$

Necessary and Sufficient Condition

Condition $1 P^{A}<P^{B}$ for all P in \mathbb{P}_{1} and any identification cut-off, k, if and only if $H^{A}(k) \leq H^{B}(k) \forall k \in\left[0, v_{2}, \ldots, 1\right] \wedge \exists k \mid H^{A}(k)<H^{B}(k)$.

Condition 2 Consider the class of poverty measures \mathbb{P}_{1}. The following three statements are equivalent:
(1) $P^{A}<P^{B}$ for all $P \in \mathbb{P}_{1}$ for any weighting vector, W, and poverty threshold, k.
(2) For any vector of weights, W,

$$
H^{A}(k) \leq H^{B}(k) \quad \forall k \in\left[0, v_{2}, \ldots, 1\right] \wedge \exists k \mid H^{A}(k)<H^{B}(k) .
$$

(0) For all $\gamma_{W, k} \in \Gamma, \Pi(W, k)$ in A is no greater than in B, and at least once strictly lower.

Empirical Application

Definition of the Indicator

- People at risk of poverty or social exclusion: one of the Europe 2020 Strategy headline indicators (to monitor progress towards the Europe 2020 strategy targets) adopted in 2010.
- Defined as the sum of persons who are:
- at-risk-of-poverty and/or
- severely materially deprived and/or
- living in households with very low work intensity.
- In terms of A-F family of poverty measures, EU multidimensional poverty indicator has a form of headcount ratio $H(k, w)$ with $w_{1}=w_{2}=w_{3}=\frac{1}{3}$ and $k=\frac{1}{3}$, i.e. the union approach.

Empirical Application

- People at risk of poverty or social exclusion: one of the Europe 2020 Strategy headline indicators (to monitor progress towards the Europe 2020 strategy targets) adopted in 2010.
- Defined as the sum of persons who are:
- at-risk-of-poverty and/or
- severely materially deprived and/or
- living in households with very low work intensity.
- In terms of A-F family of poverty measures, EU multidimensional poverty indicator has a form of headcount ratio $H(k, \mathbf{w})$ with $w_{1}=w_{2}=w_{3}=\frac{1}{3}$ and $k=\frac{1}{3}$, i.e. the union approach.

People at risk of poverty or social exclusion

1. At-risk-of-poverty

- Data Sources: EU-SILC (European Union Statistics on Income and Living Conditions)
- Time period: 2004-2013
- Spatial coverage: EU-28 plus: Iceland, Switzerland and Norway
- Sample sizes (complete observations): almost 6.5 mil in total, ranging from 8,545 (IS-2009) to 61,542 (IT-2004)
- Living in households with equivalised disposable income below 60 \% of the national equivalised median income (after social transfers)
- Modified OECD scale is applied (1-0.5-0.3)

People at risk of poverty or social exclusion

1. At-risk-of-poverty

- Data Sources: EU-SILC (European Union Statistics on Income and Living Conditions)
- Time period: 2004-2013
- Spatial coverage: EU-28 plus: Iceland, Switzerland and Norway
- Sample sizes (complete observations): almost 6.5 mil in total, ranging from 8,545 (IS-2009) to 61,542 (IT-2004)
- Living in households with equivalised disposable income below 60 \% of the national equivalised median income (after social transfers).
- Modified OECD scale is applied (1-0.5-0.3)

People at risk of poverty or social exclusion

2. Severe material deprivation

- Living in a household that cannot afford to pay for at least four out of nine items:
(1) to face unexpected expenses
(2) one week annual holiday away from home
(3) to pay for arrears (mortgage or rent, utility bills or hire purchase installments)
(4) a meal with meat, chicken or fish every second day
(5) to keep home adequately warm,
or could not afford (even if wanted to):
(6) a washing machine
(3) a colour TV
(8) a telephone
(0) a personal car

People at risk of poverty or social exclusion

3. Very low work intensity

- Living in a household, where working-age adults (18-59) worked less than 20% of their total work potential during the past year.
- Based on the number of "months at work" and "workable months" of working age persons (18-64) in the household.

Do Weights Matter? \#1

- In empirical literature sensitivity to weights checks are usually based on a very limited number of weighting schemes, e.g.:
- Assigning a weight of e.g. 0.5 to one of the dimensions and 0.25 to each of the remaining two dimensions.
- Assessment based e.g. on Spearman's ρ.
- Applying that approach to 2012 EU data we get the following results:
- $\left(w_{1}=0.5, w_{2}=0.25, w_{3}=0.25\right): \rho_{\boldsymbol{s}}=0.879$
- $\left(w_{1}=0.25, w_{2}=0.5, w_{3}=0.25\right): \rho_{\boldsymbol{s}}=0.949$
- $\left(w_{1}=0.25, w_{2}=0.25, w_{3}=0.5\right): \rho_{\boldsymbol{s}}=0.939$

BUT:

- Q: How do ranks change if we consider a wider range of combinations of k 's and w's?
- Simple simulation:
- $k=\left(\frac{1}{60}, \frac{2}{60}, \ldots, 1\right)_{N=60}$
- Creation of weighting vectors \mathbf{w} are based on permutations with repetition of elements of $\mathbf{w}_{0}=\left(\frac{1}{60}, \frac{2}{60}, \ldots, \frac{59}{60}\right)$ for which $\sum_{i=1}^{3} w_{i}=1$, i.e. we have 1,605 weighting vectors.
- For each combination of threshold k and weighting vector \mathbf{w} ranks for all countries were computed.

Simulation of a wide range of k and w combinations

Empirical Application

Empirical strategy, two analyses:

(1) Statistical testing of dominance conditions.
(2) Finding maximum change in weights that preserves the initial ranks.

Methods

1. Testing the necessary and sufficient conditions

For any sub-dimensional ratios we test:
Ho: $z(r)=0 \forall r=1,2, \ldots, R$
$H a: z(r)<0 \forall r=1,2, \ldots, R$
Rejection of null: $\max \{z(1), z(2), \ldots, z(R)\}<z_{\alpha}<0$.
Test statistic:

$$
T_{w, k}=\frac{\Pi^{A}(W, k)-\Pi^{B}(W, k)}{\sqrt{\frac{\sigma_{\Pi^{A}(W, k)}^{2}}{N^{A}}+\frac{\sigma_{\Pi^{B}(W, k)}^{2}}{N^{B}}}},
$$

where:

$$
\sigma_{\Pi^{A}(W, k)}^{2}=\Pi^{A}(W, k)\left[1-\Pi^{A}(W, k)\right]
$$

Methods

2. Finding maximum δ 's

- Q: How far can we go from equal weights while preserving the initial ranks in pair-wise comparisons? (Permanyer, 2011)
- The metric: $\delta_{\max }=\max \{\delta\}$ s.t. \nexists reranking,$\delta_{\max } \in\left[0, \frac{2}{3}\right)$

Methods

2. Finding maximum δ 's

The following algorithm was used:
(1) For each of the countries an initial ranking is detected for equal weights for each value of $k, k \in\left\{\frac{1}{240}, \frac{2}{240}, \ldots, 1\right\}_{N=240}$.
(2) For each value of k the weights are redistributed: increasing the weight of one of the dimensions by δ and decreasing weights of the remaining dimensions by $\frac{\delta}{2}, \delta \in\left\{\frac{1}{120}, \frac{2}{120}, \ldots, \frac{2}{3}\right\}$, i.e. e.g.: $w_{1_{i}}=\frac{1}{3}+\delta_{i}, w_{2_{i}}=w_{3_{i}}=\frac{1}{3}-\frac{\delta_{i}}{2}$ for $i=1,2, \ldots, 80$.
(3) For each pair of countries and each value of k a maximum value of δ which preserves the initial rankings (for that particular k) is identified.

1. Necessary and sufficient conditions

Statistical evidence for dominance:

Table: Proportions of dominant pair-wise comparisons [\%]

	$\mathbf{0 4}$	$\mathbf{0 5}$	$\mathbf{0 6}$	$\mathbf{0 7}$	$\mathbf{0 8}$	$\mathbf{0 9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 3}$
All data sets	52	51	44	47	42	42	49	56	56	59
Complete sets	x	x	x	x	42	42	47	54	55	55

RESULTS: Cross-country Comparisons (EU)

1. Necessary and sufficient conditions

Results for 2004 data:

Several dominance patterns can be identified. Based on the "longest path" we have e.g. the following clear dominance patterns:

$$
\begin{gathered}
(\mathrm{IS}-\mathrm{NO}-\mathrm{SE}) \rightarrow(\mathrm{AT}) \rightarrow(\mathrm{FR}) \rightarrow(\mathrm{MT}) \rightarrow(\mathrm{EE}) \rightarrow(\mathrm{LT}) \rightarrow(\mathrm{LV}) \rightarrow(\mathrm{BG}) \\
(\mathrm{IS}-\mathrm{NO}) \rightarrow(\mathrm{NL}) \rightarrow(\mathrm{FI}) \rightarrow(\mathrm{MT}) \rightarrow(\mathrm{EE}) \rightarrow(\mathrm{LT}) \rightarrow(\mathrm{LV}) \rightarrow(\mathrm{BG})
\end{gathered}
$$

For pairs of countries where dominance can not be assumed (in terms of the official EU multidimensional poverty indicator), four main patterns of relationship between $\delta_{\max }$ and k have been identified, and they account for over 90% of all identified patterns.

What are the patterns?

RESULTS: Cross-country Comparisons (EU)

2. δ 's vs k's: patterns

Pattern 1

Pattern 3

Pattern 2

Pattern 4

Conclusions

- Work in progress!
- We derive dominance conditions to test the robustness of comparisons for the Alkire and Foster's family of poverty measures.
- Easy to apply. Cross-country and cross-years analyses: about 50% of the comparisons are not robust.
- Poverty orderings are very sensitive to weights and cut-off values.
- Important for the analysis of time trends and cross-country comparisons: more attention should be given to sensitivity analyses.
Part of the research was financed by the Go8 fellowship and by the Slovak Scientific Grant Agency (grant VEGA 2/0026/15).

