On the Robustness of Multidimensional Poverty Orderings in the EU

Tomáš Želinský¹ Francisco Azpitarte²

¹Technical University of Košice & Charles University in Prague ²The University of Melbourne & The Brotherhood of St Laurence

Mannheim, 2-3 March 2017

A (1) > (1) > (1)

The measurement of poverty is complex: many methodological and normative choices

Especially true with multidimensional measures

- Under which conditions can we claim *robustly* that poverty in region A is higher than in region B?
- When can we say that poverty in a given region has unambigously declined or increased?

イロト イポト イヨト イヨト

Introduction

- In the multidimensional poverty measurement: weights affect the identification and the depth of poverty
- How should we weigh the dimensions? No consensus
- Standard approach: equal weights and then robustness checks for a grid of vectors, e.g. official measure in the EU
- Not a good idea: poverty comparisons are in general extremely sensitive to weights
- Importance of dominance conditions

Measurement Framework

- Alkire and Foster (2011): very influential paper
- Counting approach to multidimensional poverty: valid for cardinal and ordinal dimensions
- Assume N units and D indicators of wellbeing. If x_{nd} < z_d then n is deprived in d
- For each dimension $\exists w_d \in (0, 1)$ such that $\sum_{d=1}^{D} w_d = 1$
- The deprivation score for each individual is:

$$c_n \equiv \sum_{d=1}^D w_d \mathbb{I}(x_{nd} < z_d)$$

イロト イポト イヨト イヨト

Measurement Framework

Identification rule ρ(W, k): a person is deemed poor:
c_n ≥ k, where k ∈ [0, 1]

• Individual poverty function
$$\begin{cases} p_n = \mathbb{I}(c_n \ge k)g(c_n) \text{ if } n \text{ is poor} \\ 0 & \text{otherwise} \end{cases}$$

• where
$$g(c_n)$$
 satisifies $g(0) = 0, g' > 0$

The following class of poverty indices

$$P(W,k) = \frac{1}{N} \sum_{n=1}^{N} p_n$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Necessary and Sufficient Condition

Condition 1 $P^A < P^B$ for all P in \mathbb{P}_1 and any identification cut-off, k, if and only if $H^A(k) \le H^B(k) \ \forall k \in [0, v_2, ..., 1] \ \land \exists k | H^A(k) < H^B(k).$

Condition 2 Consider the class of poverty measures \mathbb{P}_1 . The following three statements are equivalent:

- $P^A < P^B$ for all $P \in \mathbb{P}_1$ for any weighting vector, W, and poverty threshold, k.
- Solution For any vector of weights, W, $H^{A}(k) ≤ H^{B}(k) \quad \forall k \in [0, v_{2}, ..., 1] \land \exists k | H^{A}(k) < H^{B}(k).$
- So For all $\gamma_{W,k} \in \Gamma$, $\Pi(W,k)$ in *A* is no greater than in *B*, and at least once strictly lower.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

- **People at risk of poverty or social exclusion:** one of the Europe 2020 Strategy headline indicators (to monitor progress towards the Europe 2020 strategy targets) adopted in 2010.
- Defined as the sum of persons who are:
 - at-risk-of-poverty and/or
 - severely materially deprived and/or
 - living in households with very low work intensity.
- In terms of A-F family of poverty measures, EU multidimensional poverty indicator has a form of headcount ratio H(k, w) with w₁ = w₂ = w₃ = ¹/₃ and k = ¹/₃, i.e. the *union approach.*

イロト イポト イヨト イヨト

- People at risk of poverty or social exclusion: one of the Europe 2020 Strategy headline indicators (to monitor progress towards the Europe 2020 strategy targets) adopted in 2010.
- Defined as the sum of persons who are:
 - at-risk-of-poverty and/or
 - severely materially deprived and/or
 - living in households with very low work intensity.
- In terms of A-F family of poverty measures, EU multidimensional poverty indicator has a form of headcount ratio H(k, w) with w₁ = w₂ = w₃ = ¹/₃ and k = ¹/₃, i.e. the *union approach.*

ヘロト ヘアト ヘビト ヘビト

People at risk of poverty or social exclusion 1. At-risk-of-poverty

- Data Sources: EU-SILC (European Union Statistics on Income and Living Conditions)
 - Time period: 2004 2013
 - Spatial coverage: EU-28 plus: Iceland, Switzerland and Norway
 - Sample sizes (complete observations): almost 6.5mil in total, ranging from 8,545 (IS-2009) to 61,542 (IT-2004)
- Living in households with equivalised disposable income **below 60** % of the national equivalised median income (after social transfers).
- Modified OECD scale is applied (1 0.5 0.3)

・ロト ・同ト ・ヨト ・ヨト

People at risk of poverty or social exclusion 1. At-risk-of-poverty

- Data Sources: EU-SILC (European Union Statistics on Income and Living Conditions)
 - Time period: 2004 2013
 - Spatial coverage: EU-28 plus: Iceland, Switzerland and Norway
 - Sample sizes (complete observations): almost 6.5mil in total, ranging from 8,545 (IS-2009) to 61,542 (IT-2004)
- Living in households with equivalised disposable income **below 60** % of the national equivalised median income (after social transfers).
- Modified OECD scale is applied (1 0.5 0.3)

イロト イポト イヨト イヨト

People at risk of poverty or social exclusion 2. Severe material deprivation

- Living in a household that cannot afford to pay for **at least** four out of nine items:
 - to face unexpected expenses
 - one week annual holiday away from home
 - to pay for arrears (mortgage or rent, utility bills or hire purchase installments)
 - a meal with meat, chicken or fish every second day
 - to keep home adequately warm,

or could not afford (even if wanted to):

- a washing machine
 - 🔰 a colour TV
- 🗿 a telephone
- 🧿 a personal car

ヘロト ヘ戸ト ヘヨト ヘヨト

People at risk of poverty or social exclusion 3. Very low work intensity

- Living in a household, where working-age adults (18-59) worked less than 20 % of their total work potential during the past year.
 - Based on the number of "months at work" and "workable months" of working age persons (18-64) in the household.

・ 同 ト ・ ヨ ト ・ ヨ ト

- In empirical literature sensitivity to weights checks are usually based on a very limited number of weighting schemes, e.g.:
 - Assigning a weight of e.g. 0.5 to one of the dimensions and 0.25 to each of the remaining two dimensions.
 - Assessment based e.g. on Spearman's ρ.
- Applying that approach to 2012 EU data we get the following results:

•
$$(w_1 = 0.5, w_2 = 0.25, w_3 = 0.25) : \rho_s = 0.879$$

- $(w_1 = 0.25, w_2 = 0.5, w_3 = 0.25)$: $\rho_s = 0.949$
- $(w_1 = 0.25, w_2 = 0.25, w_3 = 0.5)$: $\rho_s = 0.939$

BUT:

ヘロン 人間 とくほ とくほ とう

Ranks for the "common" weighting schemes

T. Želinský & F. Azpitarte

Robustness of Multidimensional Poverty Comparisons 12/24

- Q: How do ranks change if we consider a wider range of combinations of *k*'s and **w**'s?
- Simple simulation:
 - $k = \left(\frac{1}{60}, \frac{2}{60}, \dots, 1\right)_{N=60}$
 - Creation of weighting vectors **w** are based on *permutations* with repetition of elements of $\mathbf{w}_0 = (\frac{1}{60}, \frac{2}{60}, \dots, \frac{59}{60})$ for which $\sum_{i=1}^{3} \dots \sum_{i=1}^{3} \dots \sum_{i=1}^{3} \dots$
 - which $\sum_{i=1}^{3} w_i = 1$, i.e. we have 1,605 weighting vectors.
 - For each combination of threshold *k* and weighting vector **w** ranks for all countries were computed.

・ 同 ト ・ 国 ト ・ 国 ト …

Simulation of a wide range of k and w combinations

Empirical strategy, two analyses:

- Statistical testing of dominance conditions.
- Finding maximum change in weights that preserves the initial ranks.

・ 回 ト ・ ヨ ト ・ ヨ ト

For any sub-dimensional ratios we test:

$$Ho: z(r) = 0 \ \forall r = 1, 2, ..., R$$

$$Ha: z(r) < 0 \ \forall r = 1, 2, ..., R$$

Rejection of null: $\max\{z(1), z(2), ..., z(R)\} < z_{\alpha} < 0.$

Test statistic:

$$T_{w,k} = \frac{\Pi^A(W,k) - \Pi^B(W,k)}{\sqrt{\frac{\sigma^2_{\Pi^A(W,k)}}{N^A} + \frac{\sigma^2_{\Pi^B(W,k)}}{N^B}}},$$

where:

$$\sigma^2_{\Pi^A(W,k)} = \Pi^A(W,k)[1 - \Pi^A(W,k)]$$

イロト イポト イヨト イヨト

3

- **Q:** How far can we go from equal weights while preserving the initial ranks in pair-wise comparisons? (Permanyer, 2011)
- The metric: $\delta_{max} = max\{\delta\}$ s.t. \nexists reranking $\delta_{max} \in [0, \frac{2}{3})$

ъ

The following algorithm was used:

- For each of the countries an initial ranking is detected for equal weights for each value of k, k ∈ {1/(240), 2/(240), ..., 1}_{N=240}.
- **②** For each value of *k* the weights are redistributed: increasing the weight of one of the dimensions by δ and decreasing weights of the remaining dimensions by $\frac{\delta}{2}, \delta \in \{\frac{1}{120}, \frac{2}{120}, \dots, \frac{2}{3}\}$, i.e. e.g.: $w_{1_i} = \frac{1}{3} + \delta_i, w_{2_i} = w_{3_i} = \frac{1}{3} - \frac{\delta_i}{2}$ for $i = 1, 2, \dots, 80$.
- Solution For each pair of countries and each value of k a maximum value of δ which preserves the initial rankings (for that particular k) is identified.

<ロト < 同ト < 回ト < 回ト = 三

1. Necessary and sufficient conditions

Statistical evidence for dominance:

Table: Proportions of dominant pair-wise comparisons [%]

	04	05	06	07	08	09	10	11	12	13
All data sets	52	51	44	47	42	42	49	56	56	59
Complete sets	х	х	х	Х	42	42	47	54	55	55

・ 同 ト ・ ヨ ト ・ ヨ ト

RESULTS: Cross-country Comparisons (EU)

1. Necessary and sufficient conditions

Results for 2004 data:

AT		AT	AT	AT		AT	AT		AT			AT		
	DK		DK		DK	DK	DK	DK		DK				
	$_{\rm FI}$		\mathbf{FI}		$_{\rm FI}$		\mathbf{FI}	\mathbf{FI}		\mathbf{FI}				
			\mathbf{FR}											
IS	IS	IS	IS	\mathbf{IS}	IS	IS	IS	IS		IS		\mathbf{IS}	IS	IS
LU	LU		LU	LU	LU		LU	LU		LU			LU	
	NO		NO		NO		NO	NO		NO				
	SE		SE				SE	SE		SE				
	Countries above dominate the highlighted countries below													
AT	BE	DK	\mathbf{EE}		\mathbf{ES}	FI	\mathbf{FR}	IE	IS	IT		NO		SE
Countries below are dominated by the highlighted countres above														
									\mathbf{AT}		\mathbf{AT}			
BE		BE				BE			BE		BE	BE		BE
									DK					
\mathbf{EE}		\mathbf{EE}				\mathbf{EE}	\mathbf{EE}		\mathbf{EE}		EE	\mathbf{EE}		\mathbf{EE}
EL									EL		EL			
\mathbf{ES}		\mathbf{ES}				\mathbf{ES}			\mathbf{ES}		\mathbf{ES}	\mathbf{ES}		
		FI							FI					
\mathbf{FR}		\mathbf{FR}				\mathbf{FR}			\mathbf{FR}		\mathbf{FR}	\mathbf{FR}		\mathbf{FR}
IE		IE				IE			IE		IE	IE		IE
\mathbf{IT}		\mathbf{IT}				\mathbf{IT}			\mathbf{IT}		IT	IT		\mathbf{IT}
									NO					
\mathbf{PT}									\mathbf{PT}		\mathbf{PT}			
									SE					

T. Želinský & F. Azpitarte Robustness of Multidimensional Poverty Comparisons 20/24

Several dominance patterns can be identified. Based on the "longest path" we have e.g. the following clear dominance patterns:

$$(\text{IS-NO-SE}) \rightarrow (\text{AT}) \rightarrow (\text{FR}) \rightarrow (\text{MT}) \rightarrow (\text{EE}) \rightarrow (\text{LT}) \rightarrow (\text{LV}) \rightarrow (\text{BG})$$
$$(\text{IS-NO}) \rightarrow (\text{NL}) \rightarrow (\text{FI}) \rightarrow (\text{MT}) \rightarrow (\text{EE}) \rightarrow (\text{LT}) \rightarrow (\text{LV}) \rightarrow (\text{BG})$$

・ 同 ト ・ ヨ ト ・ ヨ ト ・

For pairs of countries where dominance can not be assumed (in terms of the official EU multidimensional poverty indicator), four main patterns of relationship between δ_{max} and *k* have been identified, and they account for over 90 % of all identified patterns.

What are the patterns?

RESULTS: Cross-country Comparisons (EU) 2. δ's vs k's: patterns

T. Želinský & F. Azpitarte

Robustness of Multidimensional Poverty Comparisons 23/24

• Work in progress!

- We derive dominance conditions to test the robustness of comparisons for the Alkire and Foster's family of poverty measures.
- Easy to apply. Cross-country and cross-years analyses: about 50 % of the comparisons are not robust.
- Poverty orderings are very sensitive to weights and cut-off values.
- Important for the analysis of time trends and cross-country comparisons: more attention should be given to sensitivity analyses.

Part of the research was financed by the **Go8 fellowship** and by the Slovak Scientific Grant Agency (grant **VEGA 2/0026/15**).