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Step 1: Compartmental models
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Step 1: Compartmental models
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Step 2: Contact patterns
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Rocha, Liljeros, Holme, 2010. PNAS 107: 5706-5711.

Escort/sex-buyer
contacts:

16,730 individuals
50,632 contacts
2,232 days



Rocha, Liljeros, Holme, 2010. PNAS 107: 5706-5711.
Rocha, Liljeros, Holme, 2011. PLoS Comp Biol 7: e1001109.
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Small But Slow World: How Network Topology and
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1

0.1-
[~
~
O
0.01-
Temporal network
0.001 | | 0
0.001 0.01 0.1 1

A



1T ime matters

Holme, Scientific Reports, 2015.
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activations can affect dynamics of systems interacting through the network, from disease
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for analyzing topological and temporal structure and models for elucidating their relation N ( I W O | k ;
to the behavior of dynamical systems. In the light of traditional network theory, one can

this review, we present the emergent field of temporal networks, and discuss methods
see this framework as moving the information of when things happen from the dynamical
system on the network, to the network itself. Since fundamental properties, such as the
transitivity of edges, do not necessarily hold in temporal networks, many of these methods
need to be quite different from those for static networks. The study of temporal networks is
very interdisciplinary in nature. Reflecting this, even the object of study has many names—
temporal graphs, evolving graphs, time-varying graphs, time-aggregated graphs, time-
stamped graphs, dynamic networks, dynamic graphs, dynamical graphs, and so on. This
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‘ B Sy Abstract. The power of any kind of network approach lies in the ablity to simplify a complex systam o

SRR that one can botter understand ite function ae o whole, Sormetimes it 3 beneofcial, however, to mclude more
‘ mformation thas in a sinphe greph of only nodes and Boks, Addicg infonmation about e of icteractions
can make predictions anc mechanistic understanding more accarate. The drawback, however, is that there
are not so meny methods available partly becanse temporal networks is a reletively voung fiele, partly
_ because it is more difficult to develop such methods ompared to for static networks. In this colloquium, we
_ b W . reviow the methods to nnalyzs and modd tempornl] networke and prosessos taking plyoe en them, focusing

- — ) i\ @ mainly on Lie last thrar rears, Thas includes the spresding of infections disease, opaions, ruinors, in social
' ! | networks; information packets in computer networks; variows tyvpes of signaling in biolbogy, and more, We
o H : ‘ also discuss future directions,

%

1 Introduction

To understand how large connceted systems work, onc
neexds (o zoom out and view them [ron & distance, In
other words, one needs a prirciplad, consistent way of dis-
carding irrelewant. information. A comman wav of dning
this is to ropresent the syatom as a network, where nodes
are connected if they intzract. For many systems one has
more information that just about wao interacts. Inchud-
mg that information into a tempora' neluork, of course,
zoes against the wlea of siaplifying the systemn. Sone-
limes, however, it could be worth the effort in teres of
mereased accuracy of predictions, ircreased mechanistic
urderstanding, ete. The drawback & that many of the

methods and models coveloped for static networks could

he ims vanla . matrinrial aoriers

oneersd Lemporal petwork theory, Soll loday, resens
rediscover tae ideas Leslie Lamport and others used i
1970 to build a theory of digtribated computing [4]
At & very fndamental level, the mathematics of
poral and siatic networks differ. We will refer 10 the
unit of interaction in a temporal network as a w
It captures informarion abont a pair of nodes intera
and the time of the nteraction A contact is the «
extension of a fink in static networks (bat we will re
link for a static relationship between two nodes - us
tha: they have one or more centaets). Being connect
a transitive watheicatical relation, ie. if (1, &) and (i
are hnks then s conmected through a path. 1hs s
also for ciredted static networks, but doss not ha:
be true for contasts in o temporal network., As a ¢

s M DO WAV SR PRI R al pe
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Holme, 2005. Phys Rev E /71:046119.
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History

Network Time

1. A power-law 1. A power-law
distribution 1s distribution 1s
discovered. discovered.

2. It makes a 2. It makes a
difference for difference for
spreading spreading
dynaimics. dynamics.

3. It helps us to o, Haclhsvusto
understand real e e i 1

epldemics. R e



Interevent times

Fat-tailed interevent time distributions

l

Slowing down of spreading.

10*

102 4

100 C_

< 1072
But both the cell S o |
phone and the B1o9
prostitution data are w0t 20,
bursty. So why are 1070 | Power-law O el
they different w.rt. 107 100 107 10° 107 20° 10° 107 10
Time

spreading®

Min, Goh, Vazquez, 2011. PRE 83, 036102.









precursors:

P Holme, 2003. Network dynamics
of ongoing social relationships.
Europhys. Lett. 64:427-433.

G Miritello, R Lara, M Cebrian, E
Moro, 2013. Limited commmunication

capac:lty unveils strategies for
human interaction. Sci. Rep 3:1560.




Ongoing link picture
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Link turnover picture
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Reference models

Interevent times neutralized
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Interevent times neutralized
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SIR on prostitution data
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SIR on prostitution data
Interevent times neutralized
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SIR on prostitution data
Beginning times neutralized
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SIR on prostitution data
End times neutralized
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SIR, average deviations
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More temporal structures

..a no-brain (low-brain?) approach

P

Temporal nhetwork structures controlling
disease spreading.

Holme, 2016.

Phvs. Rev. E

E 94 022305.



Outbreak duration
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VS static nwks
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VS fully-connected nwks
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Network structures

link duration, mean avg. fraction of nodes present when 50% of contact happened
link duration, s.d. avg. fraction of links present when 50% of contact happened
link duration, coefficient of variation avg. fraction of nodes present at 50% of the sampling time
link duration, skew avg. fraction of links present at 50% of the sampling time
link interevent time, mean frac. of nodes present 1st and last 10% of the contacts

link interevent time, s.d. frac. of links present 1st and last 10% of the contacts

link interevent time, coefficient of variation frac. of nodes present 1st and last 10% of the sampling time
link interevent time, skew frac. of links present 1st and last 10% of the sampling time

degree distribution, mean

degree distribution, s.d.

degree distribution, coefficient of variation
degree distribution, skew

node duration, mean

node duration, s.d.

node duration, coefficient of variation
node duration, skew

node interevent time, mean
node interevent time, s.d. N, [N o e

node interevent time, coefficient of variation clustering coefficient
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Network structures
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Vaccination

Assume we can vaccinate a fraction f,
then how can we choose the people
to vaccinate? Using only local info?

i





http://vax.herokuapp.com
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Neighbohood vaccination
Cohen, Havlin, ben Avraham, 20 9%




Neighborhood vaccinatio A "
Cohen, Havli en Avraham, 2002 | ;



Vaccinate the friend.

A\ ‘ “ .’_‘! *yé 1»1:‘4
Neighborhood vaccmatlon p, prritt t\
Wl
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Vaccination

vaccination
experience infection disease simulation
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Lee, Rocha, Liljeros, Holme, 2012. PLoS ONE 7:e36439.



Vaccination
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Vaccination

The recent version
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Vaccination

The weight version
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Lee, Rocha, Liljeros, Holme, 2012. PLoS ONE 7:e36439.



Vaccination
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Other temporal networks
results & future outlook



Other results

Spreading by threshold dynamics
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Random walks
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walks. Eur J Phys B 88:334.

Review papers

Masuda, Holme, 2013. Predicting and controlling infectious disease
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Holme, 2015. Modern temporal network theory: A colloquium. EurJ
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ruture

Visualization.
Important temporal-network measures.”
Mesoscopic structures.”

Finite-size scaling (how to scale up results to
populations).

Generative models.
New Kinds of data.

*beyond generalizations from static networks
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