The digitization of society brings about a structural change of the public sphere and the private, in which algorithms – quite literally – play a decisive role. We all interact in and with socio-technical systems, e.g. social media, search engines, online stores, job application platforms, news and information platforms. In these systems, algorithms play a major role in deciding which content, groups, people or institutions are presented or recommended to us and how they are being priorized. Algorithms often take the concrete behavior of users as a starting point and thus create a complex recursive interaction between the operating algorithm and human action or experience. With this, artificial intelligence, algorithms and automated processes create dynamics that might not be perceivable by users but do create social structures that substantially influence our individual lives and society as a whole. Whether or not these consequences are desirable can only be discussed and evaluated if we know precisely how digital technologies, the Web and the algorithms therein shape social structures.
This is why GESIS studies the mechanisms of socio-technical systems in order to understand the social change they bring about and to improve the basis for informed and "good" decisions. We do this through collecting digital behavioral data on societal issues, conducting online experiments to analyze behavioral patterns and their susceptibility in digital environments, and developing analytical tools. One of the most pressing social issues is inequality. Algorithms can reinforce existing social inequality or generate new distortions or discrimination. We investigate how distortions (e.g. gender bias) occur in digital practice and how, on the other hand, algorithms and AI can be used to counteract structural inequality and injustice or misinformation.
Learn more about our consulting and services:
-
Analyzing Digital Behavioral Data
Methods, tools, frameworks and infrastructures for analyzing digital behavioral data.
-
CSS Capacity Building
Talks, tutorials, materials on computational methods for the collection, processing, and analysis of digital behavioral data.
-
Digital Behavioral Data: Datasets
Curated digital behavioral data – datasets for scientific re-use.
- Ntoutsi, Eirini, Pavlos Fafalios, Ujwal Gadiraju, Vasileios Iosifidis, Wolfgang Nejdl, Maria-Esther Vidal, Salvatore Ruggieri, Franco Turini, Symeon Papadopoulos, Emmanouil Krasanakis, Ioannis Kompatsiaris, Katharina Kinder-Kurlanda, Claudia Wagner, Fariba Karimi, Miriam Fernandez, Harith Alani, Bettina Berendt, Tina Kruegel, Christian Heinze, Klaus Broelemann, Gjergji Kasneci, Thanassis Tiropanis, and Steffen Staab. 2020. "Bias in data-driven artificial intelligence systems: An introductory survey." Wiley Interdisciplinary Reviews - Data Mining and Knowledge Discovery 10 (3): e1356. doi: https://doi.org/10.1002/widm.1356. https://doi.org/10.1002/widm.1356.
- Lazer, David, Alex Pentland, Duncan Watts, Sinan Aral, Susan Athey, Noshir Contractor, Deen Freelon, Sandra Gonzalez-Bailon, Gary King, Helen Margetts, Alondra Nelson, Matthew Salganik, Markus Strohmaier, Alessandro Vespignani, and Claudia Wagner. 2020. "Computational social science: Obstacles and opportunities." Science 369 (6507): 1060-1062. doi: https://doi.org/10.1126/science.aaz8170.
- Zens, Maria, Yvette Shajanian Zarneh, Jürgen Dolle, and Freia De Bock. 2020. "Digital Public Health – Hebel für Capacity Building in der kommunalen Gesundheitsförderung." Bundesgesundheitsblatt – Gesundheitsforschung – Gesundheitsschutz 63 (6): 729-740. doi: https://doi.org/10.1007/s00103-020-03148-1.
- Oliveira, Marcos, Fariba Karimi, Maria Zens, Johann Schaible, Mathieu Génois, and Strohmaier Markus. 2019. "Mixing dynamics and group imbalance lead to degree inequality in face-to-face interaction." The 8th International Conference on Complex Networks and their Applications, 2019-12-11.
- Dimitrov, Dimitar, Florian Lemmerich, Fabian Flöck, and Markus Strohmaier. 2019. "Different topic, different traffic: How search and navigation interplay on Wikipedia." The Journal of Web Science 6 (1): 1-15. https://webscience-journal.net/webscience/article/view/71/43.
Title | Start | End | Funder |
---|---|---|---|
Political polarization and individualized online information environments: A longitudinal tracking study
(POLTRACK)
|
2022-01-01 | 2025-08-30 | SAW (Leibniz) |
NFDI for Data Science and Artificial Intelligence
(NFDI4DS)
|
2021-10-01 | 2026-09-30 | DFG |
Dehumanization Online: Measurement and Consequences (Professorinnenprogramm)
(DeHum)
|
2021-01-01 | 2026-09-30 | SAW (Leibniz) |
Artificial Intelligence without BIAS
(NoBIAS)
|
2020-01-01 | 2023-12-31 | Horizon 2020 |
Inequality research
(Inequality)
The emergence of inequality in social systems |
2017-02-01 | 2022-02-28 | Stiftung |