Local Word Embeddings for Query Expansion based on Co-Authorship and Citations

André Rattinger, Jean-Marie Le Goff, Christian Guetl
Introduction

• Learning of representations is a long standing problem
• Mitigate sparsity, learn similarities
• Terms can be used to expand queries
• Our datasets provide limited information for expansion
• Two data sources: publications and patents
• Information from authors and cited documents can help
Collaboration Spotting

- Graph visualization at CERN
- Builds collaborations of multidimensional graphs
- Collaborations are based on search in patents and publications
Query Expansion

- Query can be a poor representation of information need
- Expand query with synonyms and related words
- Effective expansion is done in the fitting context
 - Global context: “latent”: “inherent”, “surpresses”, “innate”
 - Local context: “lsa”, “dirichlet”, “allocation”, “plsi”
- Pseudo relevance feedback can help with this
 - We use it for the selection of training documents
Word Embeddings

- Fixed representation of words (and documents, etc.)
- Neural network based method, recently gained popularity in IR
- Semantically similar terms are close to each other
- Word2Vec, Glove, many more
- Benefits from big datasets while training
Datasets - ACL

- Small dataset of 9,793 research papers, 82 topics
- Scientific publications from the field of computational linguistics
- Supplemented with articles from other authors and from citations
- 33,922 articles in total (for expansion and training, not for retrieval)
Datasets - CLEF-IP

- English subset of the CLEF-IP 2011 collection
- ~420,000 patents, 1350 topics
- Each topic is expressed as a document instead of a query
- Query terms generated from the description (~30 terms)
- No supplementation is size is deemed sufficient
- Patent citation valuable as they added by the author and patent examiner.
Datasets - Overview

- Few relevant documents for both datasets
- Vocabulary size comes from the indexed documents
- ACL, is small CLEF-IP is even smaller (partly caused by english subset)

<table>
<thead>
<tr>
<th>Name</th>
<th>Topics</th>
<th>Vocab Size</th>
<th>Indexed Docs</th>
<th>Avg. Relevant Docs</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACL</td>
<td>82</td>
<td>329,490</td>
<td>9,793</td>
<td>23.67</td>
</tr>
<tr>
<td>CLEF-IP</td>
<td>1,350</td>
<td>2,648,818</td>
<td>420,193</td>
<td>7.2</td>
</tr>
</tbody>
</table>
Experimental Setup

- Pre-processing and indexing
- Initial training of word embeddings
- Retrieval and query expansion
Pre-processing

• Indexing
 • Regex tokenizer, transformation to lower case
 • Stopwords are filtered with SMART stopword list
 • Removed patent specific stopwords

• Word Embeddings
 • Regex tokenization, transformation to lower case
 • Krovetz stemming for ACL, to reduce the overall vocabulary size as the corpus is very small
Learning of word embeddings

• Initial training on whole dataset
• Another model is trained on the English-language edition of Wikipedia
• Initial model is learned, because training many local models is very inefficient
• Settings: minimum frequency of words 8, window size 7, Skip-Gram
• ACL: 20 iterations, CLEF-IP: 5 iterations
Retrieval and Query Expansion (1)

- Set of initial documents is retrieved with inverse document frequency model (InL2) from terrier
- Top k retrieved documents are used as feedback documents
- All available document from authors and citations used for retraining
Retrieval and Query Expansion (2)

- \(Q \) be a query issued by the user, \(q_1, q_2, \ldots, q_n \)
- \(C \) be the list of candidate terms for query expansion, represented as \(c_1, c_2, \ldots, c_k \)
- The initial set of \(C \) is selected out of all of the terms in the first \(m \) relevant documents and the query
- Expanded by all terms from references and authors
Retrieval and Query Expansion (3)

• Stopwords are filtered from candidate terms and they are ranked by Bo1
• Documents are used for retraining word embeddings
• Top k terms for the top ranked candidate terms are generated
• Ranked by Bo1 again
Results

- **Baseline**: retrieval without query expansion applied
- **QE global**: global query expansion with a general purpose query expansion model trained on a dataset from the English-language edition of Wikipedia
- **QE local**: locally-trained model
- **QE local ext.**: locally-trained model with the extension of reference documents and documents from co-authors.
Results - ACL

- General low retrieval performance, also in reference works, caused by low number of relevant documents
- Improved overall retrieval with local query expansion

<table>
<thead>
<tr>
<th>Method</th>
<th>MAP</th>
<th>P@5</th>
<th>P@10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>0.1497</td>
<td>0.2268</td>
<td>0.1683</td>
</tr>
<tr>
<td>QE global</td>
<td>0.1502</td>
<td>0.2268</td>
<td>0.1732</td>
</tr>
<tr>
<td>QE local</td>
<td>0.1623*</td>
<td>0.2347</td>
<td>0.1805</td>
</tr>
<tr>
<td>QE local ext.</td>
<td>0.1713*</td>
<td>0.2314</td>
<td>0.1822</td>
</tr>
</tbody>
</table>
Results - CLEF-IP

- Also low retrieval performance
- Improved overall retrieval with local query expansion, but no significant improvements

<table>
<thead>
<tr>
<th>Method</th>
<th>MAP</th>
<th>P@5</th>
<th>P@10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>0.0914</td>
<td>0.0630</td>
<td>0.0446</td>
</tr>
<tr>
<td>QE local</td>
<td>0.0916</td>
<td>0.0631</td>
<td>0.0448</td>
</tr>
<tr>
<td>QE local ext.</td>
<td>0.0923</td>
<td>0.0636</td>
<td>0.0455</td>
</tr>
</tbody>
</table>
Limitations and Future Work

- Implementation of other query expansion methods
- Integration of knowledge bases for retrieval
- Use dataset with more relevant documents on average
- CLEF-IP is based on documents and not queries
- Compare to other query expansion models
- Experiments with the patent classification system
- Different retrieval metrics
Conclusion

• Inclusion of documents that are likely to be relevant provides further information for term selection
• Query expansion increased performance for both datasets, but only significant for the ACL dataset
• CLEF-IP might be problematic because of the low number of relevant documents
• Seems effective for small datasets, but might have a certain number of relevant documents
Thank you