The Relative Impact of different Forces of Globalisation on Wage Inequality*

Stefan Jestl
Sandra M. Leitner
Sebastian Leitner

1 The Vienna Institute for International Economic Studies

7th European User Conference for EU-Microdata
25th-26th March 2021

* This research was financially supported by Jubiläumsfond of OeNB
INTRODUCTION

- Globalisation and its effects hotly debated in politics and economics
- Globalisation fosters economic growth, however there are winners and losers
- Globalisation → income inequality → rise of populism (see Rodrik, 2018)
Theoretical Framework of Globalisation Forces

- **Trade → Income Inequality**
 - *Heckscher-Ohlin model*: high level of unskilled (skilled) labor → decrease (increase) in income inequality
 - Feenstra & Hanson (1996): outsourcing of stages of production → rise in inequality in both regions (“North” and “South”)
 - Diffusion of technology → skill-biased technologies → increase in income inequality

- **FDI → Income Inequality**
 - *Heckscher-Ohlin model* and Feenstra & Hanson (1997) same implications as above
 - FDI & entry of MNE → higher demand for skilled labour → increase in inequality in host country

- **Migration → Income Inequality**
 - Effect depends on socio-economic and demographic characteristics of immigrants and native population
 - Substitutability → higher competition in labour market → decrease in wages of native workers
 - Complementarity → different skills → increase in productivity and wages of natives
Research Question

Question

What is the impact of globalisation forces,
- Trade
- FDI
- Migration

on wage inequality among native employees?

Approach

- Capture the impact at the individual level
- Apply the results in order to evaluate contribution to overall wage inequality
Econometric Approach I

- **Augmented Mincer regression** → consider globalisation measures at the industry level
- **Multilevel regression model** → individual and industry level

\[
y_{ijt} = X'_{ijt}\beta + Z'_{jt}\gamma + \delta_t + \nu_{jt} + \epsilon_{ijt}
\]

- \(y_{ijt}\) hourly wage
- \(X_{ijt}\) vector of covariates at the individual level \((k \times 1)\)
- \(Z_{jt}\) vector of covariates at the industry level \((r \times 1)\)
- \(\delta_t\) time fixed effect
- \(\nu_{jt}\) industry random effect
- \(\epsilon_{ijt}\) error term
- \(i = 1, \ldots, N\) individuals
- \(j = 1, \ldots, J\) industries
- \(t = 1, \ldots, T\) years
Econometric Approach II

- **Shapley-value decomposition** (see Shorrocks, 2013)
 - Regression-based approach

\[\hat{y}_{123} = \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2 + \hat{\gamma}_3 z_3 \]

- Calculate wage inequality based on predicted values \(\rightarrow \hat{I}_{\text{ineq}_{123}} \)
- Assessment of importance of variable groups \(\rightarrow \) capture the relative contribution to wage inequality
 - Calculate predicted values by stepwise elimination of variables (variable groups)

\[
C_1^{\{123\}} = \hat{I}_{\text{ineq}_{123}}^{(0)} - \hat{I}_{\text{ineq}_{123}}^{(1)}
\]

\[
C_1^{\{12\}} = \hat{I}_{\text{ineq}_{12}}^{(1)} - \hat{I}_{\text{ineq}_{12}}^{(2)} \quad \text{and} \quad C_1^{\{13\}} = \hat{I}_{\text{ineq}_{13}}^{(1)} - \hat{I}_{\text{ineq}_{13}}^{(2)}
\]

\[
C_1^{\{1\}} = \hat{I}_{\text{ineq}_{1}}^{(2)}
\]

- Overall contribution to wage inequality \(\rightarrow \) average over all \(C_1 \)
Data

- **Individual data**
 - *EU Statistics on Income and Living Conditions (EU-SILC)*: cross-sectional data from 2008 to 2013 → NACE at 1-digit level
 - Dependent variable: hourly wage
 - Explanatory variables: gender, age, region, firm size, temporary contract, education, occupation

- **Industry data**
 - *Migration*: share of foreign born → *EU-LFS*
 - *Trade*: VAX-VA-ratio, inter-industry offshoring, foreign-VAX-VA-ratio, intra-industry offshoring → *WIOD*
 - *FDI*: inward FDI, outward FDI → *Eurostat & OECD*
 - Additional explanatory variables: business enterprise R&D stocks, value-added per employee

- Minimize the number of explanatory variables for *Trade* and *FDI* → principal-component analysis (PCA)
Augmented Mincer Regression, 2011-2013

<table>
<thead>
<tr>
<th>Dep. variable:</th>
<th>Country:</th>
<th>AT</th>
<th>DE</th>
<th>EL</th>
<th>ES</th>
<th>FR</th>
<th>IT</th>
<th>PL</th>
<th>UK</th>
</tr>
</thead>
<tbody>
<tr>
<td>female</td>
<td></td>
<td>-0.122***</td>
<td>-0.135***</td>
<td>-0.104***</td>
<td>-0.136***</td>
<td>-0.0731***</td>
<td>-0.0793***</td>
<td>-0.116***</td>
<td>-0.130***</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.0204)</td>
<td>(0.0203)</td>
<td>(0.0202)</td>
<td>(0.0239)</td>
<td>(0.0155)</td>
<td>(0.0305)</td>
<td>(0.0196)</td>
<td>(0.0133)</td>
</tr>
<tr>
<td>age</td>
<td></td>
<td>0.0529***</td>
<td>0.100***</td>
<td>0.0466***</td>
<td>0.0362***</td>
<td>0.0271***</td>
<td>0.0427***</td>
<td>0.0301***</td>
<td>0.0386***</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.00941)</td>
<td>(0.00429)</td>
<td>(0.00523)</td>
<td>(0.00485)</td>
<td>(0.00813)</td>
<td>(0.00405)</td>
<td>(0.00636)</td>
<td>(0.00464)</td>
</tr>
<tr>
<td>age × age</td>
<td></td>
<td>-0.000494***</td>
<td>-0.00103***</td>
<td>-0.000416***</td>
<td>-0.000285***</td>
<td>-0.000222**</td>
<td>-0.000372***</td>
<td>-0.000301***</td>
<td>-0.000402***</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.000125)</td>
<td>(5.42e-05)</td>
<td>(5.44e-05)</td>
<td>(4.82e-05)</td>
<td>(9.08e-05)</td>
<td>(5.55e-05)</td>
<td>(4.07e-05)</td>
<td>(4.77e-05)</td>
</tr>
<tr>
<td>reg. intern.</td>
<td></td>
<td>0.0450**</td>
<td>0.0606***</td>
<td>0.00880</td>
<td>0.0494***</td>
<td>0.0131</td>
<td>0.0308**</td>
<td>0.0544***</td>
<td>-0.00164</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.0196)</td>
<td>(0.00623)</td>
<td>(0.0345)</td>
<td>(0.0176)</td>
<td>(0.0134)</td>
<td>(0.0129)</td>
<td>(0.0146)</td>
<td>(0.0204)</td>
</tr>
<tr>
<td>reg. urban</td>
<td></td>
<td>0.0440*</td>
<td>0.0926***</td>
<td>0.000449</td>
<td>0.0766***</td>
<td>0.0403***</td>
<td>0.0390**</td>
<td>0.0817***</td>
<td>0.00702</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.0240)</td>
<td>(0.00902)</td>
<td>(0.0192)</td>
<td>(0.0263)</td>
<td>(0.00707)</td>
<td>(0.0170)</td>
<td>(0.0204)</td>
<td>(0.0208)</td>
</tr>
<tr>
<td>sec. edu</td>
<td></td>
<td>-0.0876*</td>
<td>0.489**</td>
<td>0.137***</td>
<td>0.109***</td>
<td>0.144***</td>
<td>0.194***</td>
<td>0.0716***</td>
<td>-0.0888**</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.0512)</td>
<td>(0.197)</td>
<td>(0.0318)</td>
<td>(0.0232)</td>
<td>(0.0284)</td>
<td>(0.0285)</td>
<td>(0.0176)</td>
<td>(0.0385)</td>
</tr>
<tr>
<td>tertiary edu</td>
<td></td>
<td>0.0376</td>
<td>0.696***</td>
<td>0.241***</td>
<td>0.265***</td>
<td>0.290***</td>
<td>0.319***</td>
<td>0.254***</td>
<td>0.135***</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.0537)</td>
<td>(0.204)</td>
<td>(0.0395)</td>
<td>(0.0368)</td>
<td>(0.0349)</td>
<td>(0.0316)</td>
<td>(0.0349)</td>
<td>(0.0352)</td>
</tr>
<tr>
<td>occup. medium</td>
<td></td>
<td>0.200***</td>
<td>0.205***</td>
<td>0.0589</td>
<td>0.102***</td>
<td>0.0133</td>
<td>0.147***</td>
<td>0.118***</td>
<td>0.0956***</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.0417)</td>
<td>(0.0401)</td>
<td>(0.0559)</td>
<td>(0.0160)</td>
<td>(0.0342)</td>
<td>(0.0335)</td>
<td>(0.0256)</td>
<td>(0.0281)</td>
</tr>
<tr>
<td>occup. high</td>
<td></td>
<td>0.450***</td>
<td>0.457***</td>
<td>0.204***</td>
<td>0.314***</td>
<td>0.246***</td>
<td>0.315***</td>
<td>0.387***</td>
<td>0.412***</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.0411)</td>
<td>(0.0472)</td>
<td>(0.0740)</td>
<td>(0.0331)</td>
<td>(0.0194)</td>
<td>(0.0418)</td>
<td>(0.0406)</td>
<td>(0.0245)</td>
</tr>
<tr>
<td>temp. contract</td>
<td></td>
<td>-0.168***</td>
<td>-0.296***</td>
<td>-0.212***</td>
<td>-0.302***</td>
<td>-0.192**</td>
<td>-0.264***</td>
<td>-0.118***</td>
<td>0.0312</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.0442)</td>
<td>(0.0342)</td>
<td>(0.0475)</td>
<td>(0.0234)</td>
<td>(0.0155)</td>
<td>(0.0231)</td>
<td>(0.0134)</td>
<td>(0.0474)</td>
</tr>
<tr>
<td>medium firm</td>
<td></td>
<td>0.0943***</td>
<td>0.120***</td>
<td>0.0576***</td>
<td>0.127***</td>
<td>0.193**</td>
<td>0.163***</td>
<td>0.0685***</td>
<td>0.0952***</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.0237)</td>
<td>(0.0247)</td>
<td>(0.0130)</td>
<td>(0.0263)</td>
<td>(0.0966)</td>
<td>(0.0149)</td>
<td>(0.0214)</td>
<td>(0.0324)</td>
</tr>
<tr>
<td>large firm</td>
<td></td>
<td>0.201***</td>
<td>0.307***</td>
<td>0.0959***</td>
<td>0.276***</td>
<td>0.284***</td>
<td>0.260***</td>
<td>0.156***</td>
<td>0.195***</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.0229)</td>
<td>(0.0410)</td>
<td>(0.0159)</td>
<td>(0.0271)</td>
<td>(0.0944)</td>
<td>(0.0195)</td>
<td>(0.00910)</td>
<td>(0.0364)</td>
</tr>
</tbody>
</table>

Observations: 7,243 25,901 6,909 11,500 20,554 30,906 27,651 11,086
Industries: 12 12 13 11 12 13 13 12

Notes: Selected results, robust standard errors in parentheses. * p<0.1, ** p<0.05, *** p<0.01.
Augmented Mincer Regression, 2011-2013

<table>
<thead>
<tr>
<th></th>
<th>AT</th>
<th>DE</th>
<th>EL</th>
<th>ES</th>
<th>FR</th>
<th>IT</th>
<th>PL</th>
<th>UK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dep. variable:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mig. share</td>
<td>-0.000379</td>
<td>0.00339</td>
<td>-0.00516**</td>
<td>-0.00516**</td>
<td>-0.00344</td>
<td>-0.00444**</td>
<td>0.0385</td>
<td>-0.000257</td>
</tr>
<tr>
<td></td>
<td>(0.00598)</td>
<td>(0.00576)</td>
<td>(0.00233)</td>
<td>(0.00248)</td>
<td>(0.00317)</td>
<td>(0.00203)</td>
<td>(0.0443)</td>
<td>(0.00466)</td>
</tr>
<tr>
<td>trade</td>
<td>-0.0225</td>
<td>0.00776</td>
<td>-0.0531***</td>
<td>-0.0166</td>
<td>-0.0274*</td>
<td>0.0227</td>
<td>0.000593</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.0163)</td>
<td>(0.0356)</td>
<td>(0.0125)</td>
<td>(0.0171)</td>
<td>(0.0138)</td>
<td>(0.0145)</td>
<td>(0.0169)</td>
<td>(0.0129)</td>
</tr>
<tr>
<td>FDI</td>
<td>0.0328*</td>
<td>-0.0118</td>
<td>-0.00698</td>
<td>0.116***</td>
<td>0.0351**</td>
<td>0.0167</td>
<td>0.00595</td>
<td>0.0134</td>
</tr>
<tr>
<td></td>
<td>(0.0190)</td>
<td>(0.0138)</td>
<td>(0.00485)</td>
<td>(0.0262)</td>
<td>(0.0154)</td>
<td>(0.0236)</td>
<td>(0.0158)</td>
<td>(0.0184)</td>
</tr>
<tr>
<td>VA p.e.</td>
<td>0.288**</td>
<td>-0.0453</td>
<td>0.0515</td>
<td>0.0537</td>
<td>-0.0470</td>
<td>0.0734</td>
<td>0.0477</td>
<td>0.219***</td>
</tr>
<tr>
<td></td>
<td>(0.131)</td>
<td>(0.0818)</td>
<td>(0.0693)</td>
<td>(0.0630)</td>
<td>(0.0646)</td>
<td>(0.0845)</td>
<td>(0.0297)</td>
<td>(0.0772)</td>
</tr>
<tr>
<td>RD p.e.</td>
<td>-0.00350</td>
<td>0.0390*</td>
<td>-0.00237</td>
<td>-0.0252**</td>
<td>0.0160</td>
<td>0.00521</td>
<td>-0.0163*</td>
<td>-0.0170</td>
</tr>
<tr>
<td></td>
<td>(0.00668)</td>
<td>(0.0227)</td>
<td>(0.00891)</td>
<td>(0.0119)</td>
<td>(0.0116)</td>
<td>(0.0118)</td>
<td>(0.00970)</td>
<td>(0.0162)</td>
</tr>
<tr>
<td>Observations</td>
<td>7,243</td>
<td>25,901</td>
<td>6,909</td>
<td>11,500</td>
<td>20,554</td>
<td>30,906</td>
<td>27,651</td>
<td>11,086</td>
</tr>
<tr>
<td>Industries</td>
<td>12</td>
<td>12</td>
<td>13</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>13</td>
<td>12</td>
</tr>
</tbody>
</table>

Notes: Selected results, robust standard errors in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01.
Shapley-value decomposition – GINI, 2011-2013

Note: Own calculations and illustration.
Shapley-value decomposition – GINI, 2011-2013

Note: Own calculations and illustration.
Choice of inequality measure

- *Gini-index*: more weight on the centre of the wage distribution
- \(GE(0) \)-index: more sensitive to the bottom tail of the wage distribution
- \(GE(2) \)-index: more sensitive to the upper tail of the wage distribution

- \(GE(0) \) and \(GE(2) \): in most cases overall explained part of inequality only one third
Concluding Remarks

Summary

- Major part of wage inequality among native employees can be ascribed to individual worker characteristics → education, occupation, gender, age, ...
- Globalisation effects are quite heterogeneous
 - Migration contributes to wage inequality among natives in Southern European countries
 - No clear pattern for trade and FDI

Caveats

- Data issues in general
- Highly aggregated industries → low level of variation
- Globalisation also affects labour market participation → selection bias
References

Shapley-value decomposition – GE(0), 2011-2013

Note: Own calculations and illustration.
Note: Own calculations and illustration.
Note: Own calculations and illustration.