Innovation process: an analysis of European CIS data

Authors : Océane Vernerey and Jimmy Lopez

Preliminary results

Université de Bourgogne(UB) Laboratoire d'Economie de Dijon (LEDi) (ANR-19-CE26-0008-01)

Mannheim 16-17 March 2023

O.Vernerey et J.Lopez

Innovation process on European CIS data

Introduction and motivation Related literature

Table of contents

Introduction

- Introduction and motivation
- Related literature

Specification of our Model

- Intuition
- Model and estimation

- Sample and variables
- Descriptives Statistics

Introduction and motivation Related literature

Introduction and motivation

 \rightarrow **Innovation** : plays a crucial role as an economic engine.

 \rightarrow Innovation process : studying the link between input and output innovations

- A lot of studies use the Community Innovation Survey (CIS) :
 - Main source of statistics on business innovation in Europe :
 - to study the determinants of innovation,
 - the complementarity between the types of innovation,
 - the environmental benefit...
 - Currently available on a broad time scale :
 - Ranging from 1998 to 2018.
 - Firms in each member State of the European Union.

Introduction and motivation Related literature

Introduction and motivation (continued)

Our contribution consists of a version of the **CDM model** (Crépon, Duguet, Mairesse 1998).

Many studies use the CDM model : but this work concerns a **single country**, or a comparison between **two countries** or between **two waves** of surveys...

\rightarrow We go further by benefiting from 8 waves and 9 countries.

- to compare between countries and over time.
- We have countries that have not been much studied in the literature.

<ロト <回 > < 回 > < 回 >

Introduction and motivation Related literature

Related literature

Crépon, Duguet, Mairesse (1998) : CISO (France)

- Use the number of patents or sales of innovative products.
- Estimation : Asymptotique Least Squares.
- Positive effect of R&D on innovation and of innovation on productivity.

Mairesse Mohnen Kremp (2005) : CIS3 (France)

- Use sales of innovative products (continuous measure).
- Estimation : two generalized Tobit.
- Positive effect of R&D on innovation and of innovation on productivity.

Parisi et al (2005) : Italian manufacturing firm

- Use product and process innovation (discret measure)
- Estimation : Bivariate Probit
- Positive effect of R&D on product innovation (not on process innovation).
- Positive effect of Process innovation on productivity.

Introduction and motivation Related literature

Related literature

Griffith, Huergo, Mairesse, Peters (2006) : CIS3 (FR, DE, ES, UK)

- Use product and process innovation (discrete measure).
- Bivariate Probit.
- Positive effect of R&D on product and process innovation.
- Positive effect of product innovation on productivity but not process innovation.

Hajjem, Garrouste, Ayadi (2015) : CIS6 (France)

- Use product, process, marketing and organisational innovation (discret).
- Estimation : Multivariate Probit.
- Positive effect of R&D on all of types of innovation.
- Positive effect of marketing and organisational innovation on productivity.
- Negative effect of product innovation on productivity.

 \rightarrow From this overview, we see that there is degree of heterogeneity in the findings according to specification.

Intuition Model and estimation

Intuition of the CDM model

CDM = Crépon, Duguet, Mairesse (1998)

 \Rightarrow original empirical approach in order to clarify the stages of the innovation process.

- **STEP 1** : Firms invest in R&D.
- **STEP 2** : R&D expenditures generate (or not) innovations
- **STEP 3** : Innovative firms improve their productivity.

Research return is therefore the result of two processes :

- a research-innovation link,
- an innovation-productivity link.

Intuition Model and estimation

Model

$$\begin{cases} (1) & Rd_{i} = \sum_{k} x_{1i}^{k} b_{1}^{k} + u_{1i} \\ (2) & In(R_{i}) = \sum_{k} x_{2i}^{k} b_{2}^{k} + u_{2i} \\ (3) & Id_{i} = Rd_{i}\beta_{3} + \sum_{k} x_{3i}^{k} b_{3}^{k} + u_{3i} \\ (4) & In(I_{i}) = In(R_{i})\gamma_{4} + \sum_{k} x_{4i}^{k} b_{4}^{k} + u_{4i} \\ (5) & In(Y_{i}) = In(I_{i})\gamma_{5} + \sum_{k} x_{5i}^{k} b_{5}^{k} + u_{5i} \end{cases}$$
(1)

- Rd_i and $In(R_i)$ are respectively probability and intensity of R&D.
- Id_i and $In(I_i)$ are respectively probability and intensity of innovation.
- $In(Y_i)$ is the performance of the firm *i*.
- x_i five vectors of k covariates.
- $b_{.}, \beta_{.}$ and $\gamma_{.}$ the parameters, and $u_{.i}$ five error terms.
- \rightarrow Estimation by maximum likelihood :
 - two Type II tobit models [eq(1-2) and eq(3-4)],
 - and one linear regression for [eq(5)].

Sample and variables Descriptives Statistics

Sample and variables

Use the European Community Innovation Survey (CIS) by Eurostat :

• Harmonized survey that covers firms in each EU Member State in several waves (= three years).

Our sample (500 000 firms) :

• 8 waves from 1998 to 2016, and 9 countries : (Bulgaria, Czech Republic, Estonia, Spain, Hungary, Lithuania, Portugal, Romania, Slovakia)

Our dependant variable :

- In(R_i) → R&D intensity : the logarithm of the ratio of continuous R&D expenditure to the turnover.
- In(I_i) → Innovation intensity : the logarithm of the share of sale of new product in turnover.
- In(Y_i) → Firm's performance : approximated by the growth of turnover over the period.

Covariates : size of firm, share of market, group, cooperation and fixed effects...

O.Vernerey et J.Lopez

Sample and variables Descriptives Statistics

Descriptives Statistics

Selection extend :

- CIS3 contains the largest share of firms without innovation activity (71.22%).
- Other CIS waves quite similar (contain on average 60% of firms without innovation activity).

Innovation sample :

- Innovative firms are more likely to be part of a group (39.5% versus 21.3%).
- Innovative firms are more engaged in R&D (52% versus 5%).
- Innovative firms cooperate more (38.1% versus 4%).
- Innovative firms sell more on the international market (67.3% versu 40.1%) .
 - Less difference for the local and national market.

<ロト <回 > < 回 > < 回 >

Main results

VADIABIES	(1)	(2)	(3)	(4)	(5)
VARIABLES	R&D (proba)	R&D (log)	Innov (proba)	Innov (log)	Perform (log)
SAMPLE	Full	R&D>0	Full	Innov>0	Full
[50;249] employees (dummy)	0.005	-0.19*	0.135***	-0.071***	0.019***
[]	[0.0074]	[0.0102]	[0.0056]	[0.0157]	[0.0029]
≥ 250 employees (dummy)	0.115***	0.170***	0.227***	-0.099***	0.021***
	[0.0115]	[0.0160]	[0.0086]	[0.0226]	[0.0041]
Group (dummy)	0.117***	0.113***	0.088***	0.010	-0.003
	[0.0067]	[0.0085]	[0.0060]	[0.0131]	[0.0029]
Market share (log)	0.129***	-0.317***			
	[0.0026]	[0.0039]			
National market (dummy)	0.455***				
	[0.0111]				
International market (dummy)	0.927***				
	[0.0109]				
Cooperation (dummy)			1.103***		
			[0.0071]		
R&D probability (dummy)			1.529***		
			[0.0175]		
R&D intensity (log)				0.226***	
				[0.0210]	
Innovation intensity (log)					0.024***
~					[0.0014]
Observations			504 660		
W	ald chi2(443) = 20	5484.42 Prob	> chi2 = 0.0000		
	Standar	d errors in brac	kets		

*** p<0.01, ** p<0.05, * p<0.1

Ξ.

・ロト・(部・・ヨ・・ヨ・)

Results by countries and by waves

COUNTRY	BG	CZ	EE	ES	HU	LT	РТ	SK*
R&D intensity (log)	-0.105	0.512***	0.417***	0.152***	0.347	0.913***	0.437***	0.418***
(on innovation intensity (log))	[0.1293]	[0. 06821]	[0.2109]	[0.0229]	[0.2478]	[0.1495]	[0.0080]	[0.1905]
Innovation intensity (log)	0.026***	0.028***	0.054***	0.012***	0.037***	0.023***	0.032***	0.028***
(on performance (log))	[0.0043]	[0.0038]	[0.0078]	[0.0021]	[0.0054]	[0.0086]	[0.0035]	[0.0095]
Observations	98 518	41 278	12 441	197 244	31 486	14 110	42 947	14 945

With waves and sectors fixed effects

Standard errors in brackets

*** p<0.01, ** p<0.05, * p<0.1

WAVE	CIS3	CIS4	CIS6	CIS8	CIS10	CIS12	CIS14	CIS16
	(1998-2000)	(2002-2004)	(2004-2006)	(2006-2008)	(2008-2010)	(2010-2012)	(2012-2014)	(2014-2016)
R&D intensity (log) (on innovation intensity (log))	0.138 [0.1173]	0.236*** [0. 0699]	0.284*** [0.0643]	0.275*** [0.0558]	0.192*** [0.0492]	0.145*** [0.0552]	0.203*** [0.0549]	0.241*** [0.0546]
Innovation intensity (log) (on performance (log))	0.036*** [0.0088]	0.039*** [0.0048]	0.034*** [0.0041]	0.019*** [0.0036]	0.020*** [0.0038]	0.022*** [0.0040]	0.011** [0.0045]	0.021*** [0.0034]
Observations	19 521	43 611	61 267	68 453	63 795	59 881	57 660	63 836

With country and sector fixed effects

Standard errors in brackets

*** p<0.01, ** p<0.05, * p<0.1

イロト イヨト イヨト イヨト

Conclusion

Conclusion :

- We find a **positive effect** of R&D intensity on innovation intensity.
- We find a **positive effect** of innovation intensity on performance.
- We find a certain **heterogeneity** between countries and over time.

Extensions :

- Add control variables : for exemple financial support.
- Testing alternative estimation methods and sensitivity analysis.
- Add other types of innovation and check the complementarity.
- Integrate the innovation process with the impact of anti-competitive regulations on the labor market.

Thank you for your attention !

O.Vernerey et J.Lopez

Innovation process on European CIS data

14 / 14

æ

イロン 不良 とくほど 不良と