Innovation Types and the Distribution of Turnover Growth Rates

Morina, Drini

Lucas, Henning Heiden, Stefanie

Gottfried Wilhelm Leibniz University Hannover Institute for Innovation Research,
Technology Management and
Entrepreneurship

Agenda

- 1. Introduction Innovation and Firm Growth
- 2. Data The Community Innovation Survey (CIS)
- 3. Methods Quantile Generalized Additive Models (QGAM)
- 4. Results
- 5. Discussion
- 6. Outlook

1. Introduction: Is R&D benefitial?

- Policy makers assume that innovation drives firm growth
- But R&D is uncertain and risky (Bloom & Bloom, 2007)
- Empirically inconclusive until 2008 (Coad & Rao, 2008)
- Maybe solved by "utilizing sophisticated statistical methods" (Starbuck, 1971: p. 126)

1. Introduction: Is R&D benefitial?

- Policy makers assume that innovation drives firm growth
- But R&D is uncertain and risky (Bloom & Bloom, 2007)
- Empirically inconclusive until 2008 (Coad & Rao, 2008)
- Maybe solved by "utilizing sophisticated statistical methods" (Starbuck, 1971: p. 126)
- Innovation affects the distribution of of firm growth (e.g. Coad & Rao, 2008; Kaiser, 2009; Hölzl, 2009; Falk, 2010; Mazucatto & Demirel, 2012; Segerra & Teruel, 2014; Bianchini et al., 2018; Moschella et al., 2019; Guarascio & Tamagni, 2019; Calvino, 2021 among others)

1. Introduction: Distribution of firm growth

Source: Coad & Rao (2008)

annual (deflated) sales growth rate

1. Introduction: Quantile-specific effects

Source: Coad & Rao (2008)

2. Data: Source

- The Community Innovation Survey (CIS):
 - Series of firm surveys (in two-year waves)
 - Ensured reliability and validity
 - Detailed data on innovation activity
 - Around 70.000 observations of 241 variables

- Period 2016 2018 (short run)
- Industries: NACE codes 13–96

2. Data: Variables

Subsample construction by *Innovation Type*

- Variables:
 - Response variable:
 - Turnover growth denoted by $G_{i,t}$
 - Predictor variable:
 - R&D intensity denoted by $RDI_{i,t}$

Morina, Lucas, Heiden

2. Data: Description

- The Community Innovation Survey (CIS):
 - Product innovation subsample:

Variable	mean	median		n (before cleaning)	
Turnover growth	0.47	0.1	0.26	7910	3001
R&D intensity	0.15	0.03	0.49	7910	3001

– Process innovation subsample:

Variable	mean	median		n (before cleaning)	
Turnover growth	0.50	0.1	3.3	9019	1847
R&D intensity	0.20	0.02	1.05	9019	1847

2. Data: Dependent Variabel

Distribution of Turnover Growth

2. Data

2. Data

2. Data

3. Methods: Non-linear Regression

- Fitting by
 - Polynomial regression

• Try and error:
$$y = \beta_0 + \beta_1 x$$

$$y = \beta_0 + \beta_1 x + \beta_2 x^2$$

$$y = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3$$

- Spline-based regression
 - Series of polynomial segments (basis function expansions)
 - Connected at so called Knots

3. Methods: Spline-based regression

3. Methods: Spline-based regression

3. Methods: Non-linear regression

- Fitting by
 - Polynomial regression

• Try and error:
$$y = \beta_0 + \beta_1 x$$

 $y = \beta_0 + \beta_1 x + \beta_2 x^2$
 $y = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3$

- Spline-based regression
 - Series of polynomial segments (basis function expansions)
 - Connected at so called Knots
- Generalized additive model (GAM, Hastie and Tibshirani, 1990)
 - Automatically determines smoothing parameters

3. Method

- Generalized Additive Models, GAMs (Hastie and Tibshirani, 1990)
 - Response variable Y depends on predictor variables x_i
 - The expected value of y_i is related to x_i via a structure such as

$$h(E(Y)) = \beta_0 + f_1(x_1) + f_2(x_2) + ... + f_m(x_m)$$

- h is a link function
- $-f_i$ may be specified parametrically or non-parametrically

3. Method

- Generalized Additive Models, GAMs (Hastie and Tibshirani, 1990)
 - Response variable Y depends on predictor variables x_i
 - The expected value of y_i is related to x_i via a structure such as

$$h(E(Y)) = \beta_0 + f_1(x_1) + f_2(x_2) + \ldots + f_m(x_m)$$

- h is a link function
- f_i may be specified parametrically or non-parametrically
- We use thin plate regression splines
 - Estimate the degrees of freedom
 - Estimate penalty to smoothness

Both automatically based on GCV or REML

3. Method

- Generalized Additive Models, GAMs (Hastie and Tibshirani, 1990)
 - Response variable Y depends on predictor variables x_i
 - The expected value of y_i is related to x_i via a structure such as

$$h(E(Y)) = \beta_0 + f_1(x_1) + f_2(x_2) + \ldots + f_m(x_m)$$

- h is a link function
- f_i may be specified parametrically or non-parametrically
- We use thin plate regression splines
 - Estimate the degrees of freedom
 - Estimate penalty to smoothness

Both automatically based on GCV or REML

→ see Woods et al. (2017)

3. Methods

- Quantile Regression (Kroenker, 2005)
 - Estimates conditional quantiles of the response variable (instead of the conditional mean):

$$Q_{Y|X}(q) = X\beta_q$$
 for the qth quantile

- Quantile Generalized Additive Models (QGAMs):
 - Developed by Fasiolo et al. (2017)
 - Framework for additive quantile regression
 - Uses probability density similar to the pinball loss (The "Extended Log-F" density)
 - Inference method is Restricted Maximum Likelihood (REML)
 - R software package "qgam" (Fasiolo et al. 2017)

3. Methods

Empirical model:

$$h(G_{i,t}) = \beta_0 + f(RDI_{i,t-1}) + \beta_1 G_{i,t-1} + \beta_2 X_{i,t-1} + \beta_3 IND_i + \beta_4 YEAR_t + u_{i,t}$$

where

- $G_{i,t}$ is log-transformed turnover growth
- $RDI_{i,t-1}$ is log-transformed R&D intensity
- $X_{i,t-1}$ is a set of control variables (number of amployees, age)
- IND_i and $YEAR_t$ are fixed effects
- $-u_{i,t}$ is an error term

4. Results: Partial effect of R&D intensity

Product Innovation

Partial Effect on Log Turnover Growth

Log R&D intensity

Process Innovation

-1.0

0

4. Results: Partial effect of R&D intensity

Product Innovation

Partial Effect on Log Turnover Growth 1.0 0.5 0.0 -0.5 -1.0 Log R&D intensity

Process Innovation

5. Discussion

- Main findings:
 - Link is indeed non-linear
 - Relationship depends on R&D intensity level
- Indicating that
 - linear quantile regression results are skewed
 - R&D can also be benefitial for firms in "bad conditions"

6. Outlook

- Our results describe the very short run
- Further analysis could
 - Employ different time lags and timing
 - Ensure causality (e.g. by instrumental variables)
 - Estimate Industry-specific models

Thank you for your attention

Any questions?

Product Innovation

Process Innovation

