Social networks and their base of implications: What?

Object of Investigation, and Formalization

- bipartite networks (common in real world)
- there is a lack of random graph generators

- representation via context
- imagine formal concepts as maximal (bi-)cliques

\mathbb{K}_{misn}	cabaret	ballet	opera
userA	×		×
userB	×	×	
userC	×		×
userD		×	

Social networks and their base of implications: **How?**Attribute Implications / Canonical Base

Implication by example:

 $\{\text{opera}\} \rightarrow \{\text{cabaret}\}\$, so all users who like the opera also like cabaret. This is true since $\{\text{opera}\} \rightarrow \{\text{cabaret}\} \Leftrightarrow \{\text{userA},\text{userC}\} \subseteq \{\text{userA},\text{userC}\}\$

Canonical base

Base of all implications which is:

- sound
- complete
- non-redundant
- minimal

Social networks and their base of implications: Results!

Observations - Introduce a new measure?

You see:

• Different random network generators generate different distributions.

