Text und Data Mining umfasst die Entwicklung und Anwendung von Methoden, um für die Sozialwissenschaften relevantes Wissen aus unstrukturierten Texten und Datenströmen zu extrahieren.
Schwerpunkte der Forschung in diesem Bereich sind:
- Erkennung von statistischen Regelmäßigkeiten in Daten und Texten und deren Nutzung für unterschiedliche Anwendungsfälle, z.B. für die automatisierte Gruppierung von Texten oder Datenpunkten nach bestimmten Merkmalen (wie demographischen Merkmalen oder politischen Einstellungen)
- Verknüpfung von Umfragedaten mit digitalen Verhaltensdaten, um Modelle zur Erklärung des Verhaltens unterschiedlicher Benutzergruppen zu erstellen
- Semantische Anreicherung und Analyse von kollaborativ erstellten Dokumenten (z.B. von Wikipedia-Artikeln oder wissenschaftlichen Publikationen) und deren Verknüpfung mit Informationen zum Erstellungsprozess (z.B. demographische Attribute der Verfassenden, Konflikte, Produktivität)
- Statistische Modellierung von sequentiellem menschlichen Handeln (z.B. Navigationsentscheidungen im Web oder die individuelle Fortbewegung im städtischen Straßensystem)
- Erkennung, Disambiguierung und Verlinkung von sozialwissenschaftlich relevanten Entitäten in wissenschaftlichen Publikationen (wie insbesondere Referenzen auf Forschungsdaten)
- Extraktion von Schlüsselinformationen aus Texten (z.B. Keywords) und (Semi-)Automatisierung der Inhaltserschließung
- Soldner, Felix, Justin Chun-ting Ho, Mykola Makhortykh, Isabelle W.J. van der Vegt, Maximilian Mozes, and Bennett Kleinberg. 2019. "Sentiment patterns in videos from left- and right-wing YouTube news channels." Euro CSS 2019, 2019-09-02.
- Soldner, Felix, Justin Chun-ting Ho, Mykola Makhortykh, Isabelle W.J. van der Vegt, Maximilian Mozes, and Bennett Kleinberg. 2019. "Sentiment patterns in videos from left- and right-wing YouTube news channels." NAACL 2019, Workshop NLP + CSS.
- Kohne, Julian, Jon Elhai, and Christian Montag. 2023. "A Practical Guide to WhatsApp Data in Social Science Research." In Digital Phenotyping and Mobile Sensing, edited by Harald Baumeister, and Christian Montag, 171 - 205. Cham: Springer. doi: https://doi.org/10.1007/978-3-030-98546-2_11.
- Soldner, Felix, Bennett Kleinberg, and Shane Johnson. 2021. "Data confounds lead to performance overestimations in fake review detections." IC2S2 2021 - 7th International Conference on Computational Social Science, ETH Zürich, 2021-07-27.
- Dimitrov, Dimitar, Dennis Segeth, and Stefan Dietze. 2022. "Geotagging TweetsCOV19: Enriching a COVID-19 Twitter Discourse Knowledge Base with Geographic Information." In Companion Proceedings of WWW '22: The ACM Web Conference 2022 Virtual Event, Lyon France April 25 - 29, 2022, edited by Frédérique Laforest, Raphaël Troncy, Lionel Médini, and Ivan Herman, 438-442. New York: ACM. doi: https://doi.org/10.1145/3487553.3524623.