The phenomenon of big data does not only deeply affect current societies but also poses crucial challenges to social research. This article argues for moving towards a sociology of social research in order to characterize the new qualities of big data and its deficiencies. We draw on the neopragmatist approach of economics of convention (EC) as a conceptual basis for such a sociological perspective. This framework suggests investigating processes of quantification in their interplay with orders of justifications and logics of evaluation. Methodological issues such as the question of the “quality of big data” must accordingly be discussed in their deep entanglement with epistemic values, institutional forms, and historical contexts and as necessarily implying political issues such as who controls and has access to data infrastructures. On this conceptual basis, the article uses the example of health to discuss the challenges of big data analysis for social research. Phenomena such as the rise of new and massive privately owned data infrastructures, the economic valuation of huge amounts of connected data, or the movement of “quantified self” are presented as indications of a profound transformation compared to established forms of doing social research. Methodological and epistemological, but also institutional and political, strategies are presented to face the risk of being “outperformed” and “replaced” by big data analysis as they are already done in big US American and Chinese Internet enterprises. In conclusion, we argue that the sketched developments have important implications both for research practices and methods teaching in the era of big data.
Order this Article (PDF)
Access via EBSCO for Registered Users
All about Special Issue "Social Finance/Big Data"