GESIS is a research-based infrastructure institution for the social sciences and conducts its own continuous and interdisciplinary research in four major research areas. The results of our research serve both to gain scientific knowledge and to sustainably improve our offerings for the social sciences.
For GESIS, the quality of data takes center stage. GESIS strives to provide high-quality research data as well as methods and tools that enable users to assess for themselves how high the quality of research data is.
With our research work in the areas of Survey Methodology, Computational Methods, Research Data Management and Substantive Research, we are constantly expanding and optimizing our portfolio of services, with which we support researchers who work with quantitative data on social science issues and make their own contributions to fundamental substantive issues.
Schoch, David, Chung-hong Chan, Claudia Wagner, and Arnim Bleier. 2024. "Computational reproducibility in computational social science." EPJ Data Science 13 (2 December 2024): 75. doi: https://doi.org/10.1140/epjds/s13688-024-00514-w.
Lietz, Haiko. 2024. "Kritikalität und Selbstähnlichkeit in der relationalen Soziologie Whites." 9. Kongress der Deutschen Gesellschaft für Netzwerkforschung, Schader Stiftung, Darmstadt, 2024-10-29.
Sun, Jun, and Fariba Karimi. 2024. "Emergence of group size disparity in growing networks with adoption." Communications Physics 7 (19 September 2024): 309. doi: https://doi.org/10.1038/s42005-024-01799-z.
Lietz, Haiko. 2024. "Practical computational analytical sociology." 16th Annual Conference of the International Network of Analytical Sociology, Leipzig University, Leipzig, 2024-05-30.
Weiß, Bernd, Joachim G. Piepenburg, Anna Hebel, Sebastian Stier, Frank Mangold, Judith Gilsbach, and Laura Latocha. 2024. "Die nutzendenzentrierte Erhebung von digitalen Verhaltensdaten: Ein Vergleich zwischen probabilistischen und nicht-probabilistischen Rekrutierungsansätzen am Beispiel des GESIS Panel.dbd." Symposium zur Emeritierung von Prof. Dr. Michael Wagner, Universität zu Köln, Köln, 2024-12-13.
Weiß, Bernd, Joachim G. Piepenburg, Anna Hebel, Sebastian Stier, Frank Mangold, Judith Gilsbach, and Laura Latocha. 2024. "Comparing Probability- and Nonprobability-based Recruitment for Survey and Digital Behavioral Data Collections: The new GESIS Panel.dbd Digital Behavioral Data Sample." Mannheim Research Colloquium on Survey Methods (MaRCS), Mannheimer Zentrum für Europäische Sozialforschung (MZES), Mannheim, 2024-12-10.
Nutz, Theresa, Nora Müller, and Hao Ting Chan. 2024. Generational trends and predictors of hormonal contraceptive use in Germany: A machine learning approach. doi: https://doi.org/10.31235/osf.io/k2q6w.
Watteler, Oliver, and Luisa Golland. 2024. "Publishers‘ data submission policies for journal articles. An explorative review and guidelines." In GESIS Blog: Growing Knowledge in the Social Sciences, doi: https://doi.org/10.34879/gesisblog.2024.88.
Höhne, Jan Karem, Timo Lenzner, and Joshua Claassen. 2025. "Automatic speech-to-text transcription: Evidence from a smartphone survey with voice answers." International Journal of Social Research Methodology. doi: https://doi.org/10.1080/13645579.2024.2443633.